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Abstract 

In recent years, we have seen a significant interest in data driven deep learning approaches for 

video anomaly detection, where an algorithm must determine if specific frames of a video 

contain abnormal behaviors. However, video anomaly detection is particularly context-specific, 

and the availability of representative datasets heavily limits real-world accuracy. Additionally, 

the metrics currently reported by most state-of the-art methods often do not reflect how well the 

model will perform in real-world scenarios. In this article, we present the Charlotte Anomaly 

Dataset (CHAD). CHAD is a high resolution, multi-camera anomaly dataset in a commercial 

parking lot setting. In addition to frame-level anomaly labels, CHAD is the first anomaly dataset 

to include bounding box, identity, and pose annotations for each actor. This is especially 

beneficial for skeleton-based anomaly detection, which is useful for its lower computational 

demand in real-world settings. CHAD is also the first anomaly dataset to contain multiple views 

of the same scene. With four camera views and over 1.15 million frames, CHAD is the largest 

fully annotated anomaly detection dataset collected from continuous video, more than 2x the 

size of the next largest. To demonstrate the efficacy of CHAD for training and evaluation, we 

benchmark two state-of-the-art skeleton-based anomaly detection algorithms on CHAD and 

provide comprehensive analysis, including both quantitative results and qualitative examination. 

 
1. Introduction 

Video anomaly detection, which requires understanding if a video contains anomalous 

behaviors, is a popular but challenging task in computer vision. In addition to substantial 

research interest, many real-world applications greatly benefit from being able to determine if 

such anomalous behaviors are present. Parking lot surveillance is one such application, where 

being able to determine the presence of an anomalous action (e.g. fighting, theft, fainting) is 

paramount. 

Current state-of-the-art (SotA) deep learning solutions take one of two approaches. The first is 

an appearance based method, where the algorithm works directly on video frames. The second 

is the skeleton-based methodology, in which algorithms rely on extracted human pose data to 

understand human behaviors. Both methods require large amounts of quality data. This need is 
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amplified for unsupervised approaches, which try to learn the normal behaviors of a specific 

context and need many example frames to do so. 

There are currently only a limited number of datasets for video anomaly detection. These 

datasets, while seeing continued growth in the amount of data provided, also tend to fall short 

regarding the number of normal frames per context (i.e., per scene). Additionally, no current 

video anomaly dataset provides the detection, tracking, and pose information required by 

skeleton-based methods, leaving them to rely on external algorithms to generate this data. Since 

there is no standard for this, it is difficult to determine how much of an approach’s error is due 

to the noise in this generated data or from the algorithm itself. This is further obfuscated by the 

inconsistency of the metrics used in reporting performance. Of the three main metrics for 

anomaly detection, most SotA approaches only report one. However, all of them are necessary 

for a full understanding of an algorithm’s performance, especially in the real-world. 

In this paper, we present the Charlotte Anomaly Dataset (CHAD), a high-resolution, multi- 

camera anomaly detection dataset in a parking lot setting. CHAD is designed to address the 

most challenging issues facing current video anomaly detection datasets. The first video 

anomaly dataset with multiple camera views of a single scene, CHAD has over 1.15 million 

frames capturing the same context. With over 1 million normal frames, 2.9× that of the next 

largest comparable dataset, CHAD places itself as the premiere video anomaly dataset for 

unsupervised methods. Additionally, CHAD provides human detection, tracking, and pose 

annotations, allowing for a more accurate standard and positioning itself as the best-in-class 

dataset for skeleton-based anomaly detection. 

We also propose a new standard in the benchmarking and evaluation of real-world video 

anomaly detection. Included is a detailed discussion on metrics, the benefits and disadvantages 

of each, and how the use of all three is needed to truly understand an algorithm’s performance. 

To demonstrate the efficacy of CHAD, we train two SotA skeleton based approaches, report 

both single camera and multi camera performance, and compare to those methods trained on 

other datasets. 

 
2 Related Work 

Anomaly Detection Algorithms Appearance-based methods utilize appearance and motion 

features generated directly from pixel data for detecting anomalies (Chu et al. 2019; Zhou et al. 

2016; Sultani, Chen, and Shah 2018; Tian et al. 2021; Goodfellow et al. 2014; Ganokratanaa, 

Aramvith, and Sebe 2019; Ravanbakhsh et al. 2019; Liu et al. 2018). These methods generally 

achieve high accuracy in their context at the cost of high computation. Skeleton-based methods 

utilize high-level, low-dimensional human pose skeletons (Rodrigues et al. 2020; Luo, Liu, and 

Gao 2021; Markovitz et al. 2020; Morais et al. 2019; Li, Chang, and Liu 2022). These skeletons 

are informative in the context of human behavior while requiring far less computation than 

working with raw video data. They are more privacy preserving, and they remove demographic 

biases. As such, researchers have found significant success in skeleton-based anomaly 

detection. 
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Anomaly Detection Datasets The CUHK Avenue Dataset (Lu, Shi, and Jia 2013) consists of 

nearly 31K frames captured from a single camera. Abnormal objects, walking in the wrong 

direction, and sudden movements are examples of anomalous behaviors in this dataset. The 

UCSD Anomaly Detection Dataset (Mahadevan et al. 2010) consists of 19K frames overlooking 

pedestrian walkways. UCSD has been categorized into two subsets, each one covering a 

different view. UCSD Ped1 sees pedestrian movement perpendicular to the camera, while 

UCSD Ped2 sees movement parallel to the camera. UCSD contains positional information for 

localizing anomalies. 

The Subway dataset (Adam et al. 2008) consists of two surveillance videos, the subway 

entrance, and exit. With a combined total of 139 minutes of video, this dataset counts IITB- 

Corridor (Rodrigues et al. 2020) was the largest single-camera anomaly detection dataset that 

existed before CHAD. It contains nearly 440K frames in a campus setting. Recorded in high- 

resolution 1080p, it is the only continuous video anomaly detection dataset with a resolution 

comparable to CHAD. 

The ADOC dataset (Pranav, Zhenggang, and K 2020) is captured from a single high-resolution 

camera over 24 hours in a campus setting. ADOC consists of 260K frames and adopts an 

approach of considering any low-frequency behavior to be anomalous. Assuming only walking 

is normal, they consider all other behaviors as anomalous, even relatively commonplace 

activities like walking with a briefcase, having a conversation, or a bird flying through the air. 

While this categorization works for ADOC’s context, it is inconsistent with how other datasets 

define anomalous behaviors. 

Specifically for supervised anomaly detection, UBnormal (Acsintoae et al. 2022) is composed 

entirely of synthetically generated videos. With a total of 236,902 frames, ABnormal is 

moderately large compared to other anomaly datasets, though with 29 scenes the average 

number of frames per scene is fairly low. 

UCF Crime (Sultani, Chen, and Shah 2018) and X-D Violence (Wu et al. 2020) collect video 

clips from many different sources in varying contexts, as opposed to continuous recordings. 

This allows them to be enormous by anomaly dataset standards but is so fundamentally different 

in problem formulation that it could be considered a differ ent task altogether. XD-Violence 

provides both video and audio, making it unique among video anomaly datasets. 

All of these datasets bring their own benefits and have helped advance the field of video 

anomaly detection. However, while they all have their own strengths, each of them also provides 

its own challenges when it comes to training networks for the real-world. Some datasets are too 

small, either in overall frames or frames per scene. Some of them have strict definitions of 

normal behaviors that would be undesirable in a real-world context. Some have to contend with 

domain shift, either from taking a large amalgamation of clips from entirely different contexts or 

from training with synthetic actors and moving to real persons and objects when used in a real- 

world context. And while many of these datasets provide multiple contexts, none of them provide 

different views of the same context, as would be fairly common in a surveillance setting. Further, 

none of these datasets 
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3. Data Collection and Setup 

Since anomaly detection is such a context-specific task, it is important that the data used to train 

algorithms is representative of their real-world environments. Often the disconnect between 

training data, and inference data leads to un satisfying performance in the real-world (Alinezhad 

Noghre et al. 2022). CHAD was designed to accurately mimic a real world parking lot 

surveillance setting. The four cameras, as seen in Fig. 1, were positioned to cover the same 

general scene, though their perspectives give them each a unique context compared to the 

others. Each video is recorded in full HD (1920x1080, 30fps), except camera 4 which is in 

standard HD (1280x720, 30fps). 

There are thirteen actors present in CHAD. The actors represent diverse demographics (gender, 

age, ethnicity, etc.) and each participates in both normal and anomalous clips. There are 22 

classes of anomalous behaviors in CHAD. This list has been curated in line with other state-of- 

the-art datasets (Liu, W. Luo, and Gao 2018; Lu, Shi, and Jia 2013; Adam et al. 2008; Ma 

hadevan et al. 2010). All other actions present in CHAD (e.g. walking, waving, talking, etc.) are 

considered normal. 

4 Annotation Methodology 

CHAD contains four types of annotations: frame-level anomaly labels, person bounding boxes, 

person ID labels, and human keypoints. 

4.1 Anomaly Annotations 

We annotate anomalous behaviors at the frame level. This is, we mark the frame where the 

anomalous behavior begins, the frame where it ends, and every frame in between. This is done 

by hand, accounting for all the behaviors defined in Section 3. These frame-level labels are 

needed for both appearance-based and skeleton-based approaches. CHAD does not include 

anomaly localization labels. 

4.2 Person Annotations 

One of the innovations that sets CHAD above its peers is the inclusion of person annotations. 

Person-annotations ensure they are more representative of a real-world situation (Chandra et 

al. 2019). It allows skeleton-based anomaly detection methods access to the processed data 

they need without having to spend time extracting it themselves. We hope this will make 

skeleton-based anomaly detection more accessible to researchers, leading to more innovation. 

It also sets a standard previously unavailable for how to generate this human detection, tracking, 

and pose information. With this standard, the variability based on the quality of input data is 

removed, leading to more precise and fair comparisons between approaches. 

Bounding Boxes The bounding box of a person refers to the upper and lower x and y coordinate 

limits they occupy in an image. Having quality bounding boxes for each individual and for every 

frame is doubly important for CHAD, as this localization is needed for the extraction of both 

person ID labels and human keypoints as well. For this reason, CHAD utilizes the popular object 

detection algorithm YOLOv4 (Bochkovskiy, Wang, and Liao 2020) for generating quality 
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bounding boxes. Since CHAD is focused on anomalous human behavior, only the bounding 

boxes for people are used. 

Person ID Labels Anomaly detection algorithms often utilize temporal information to understand 

the behaviors of people. Particularly for skeleton-based methods, it is necessary to be able to 

associate the different poses of a person to that specific person across frames. Person ID labels 

provide this information, allowing for temporal tracking of individual persons in each video clip. 

Given the bounding box information generated previously, DeepSORT (Wojke, Be wley, and 

Paulus 2017) was utilized to provide tracking for persons through frames, generating unique 

person ID labels for each person in a video clip. For label stability, a three frame warm-up is 

used by DeepSORT before providing person ID labels. As such, the first two frames of each 

video clip are absent of personal annotations. 

Human Keypoints CHAD contains pose information in the form of human pose skeletons. These 

skeletons are made up of human keypoints, or points of interest on the human body. While there 

are several methods for defining what key points to use, CHAD follows the 17 keypoint 

methodology proposed by MS COCO (Lin et al. 2014). Using the localization provided by the 

previously generated bounding boxes, keypoints are extracted using HRNet (Sun et al. 2019), 

a prolific algorithm for human pose estimation used by many. To ensure we only provide quality 

keypoint annotations, we remove any person with low confidence (¡50%) for at least half of their 

keypoints (9+). While this leads to some frames where people are not detected, it helps reduce 

the overall noise of the data that is present. 

4.3 Annotation Smoothing 

The algorithms used to annotate CHAD are imperfect, and there are instances where people 

are completely missed at either the object detection or keypoint extraction stage. Combined with 

our purposeful removal of overly noisy data, this results in an undesirable number of missed 

persons. To compensate for this, we introduce annotation smoothing to CHAD, using high 

confidence annotations to help fill in the missing information. 
 
 

Figure 1: Approximate position and the views of the cameras. 
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Given the relatively high frame rate of CHAD at 30 frames per second, it is a reasonable 

assumption that the positions and skeletons of a person will not drastically change between 

consecutive frames. As such, we can use linear interpolation to approximate the bounding box 

coordinates of each individual, assuming we have accurate detection at the start and end of the 

missing frames, and the number of missing frames is not too large. We choose 15 frames, or 

half a second, as a qualitative analysis showed this to be long enough to provide a significant 

benefit to annotation consistency, but not so long that the data it produced became unreliable. 

We apply the same smoothing technique to the keypoint annotations, with the same frame 

limitations. The details of smoothing are provided in the following equation: 

Xi = (XN − XN − M ) × i + XM (1) 

 
 

where Xi refers to a missing point (either bounding box or keypoint coordinate) at frame i, XM 

and XN refer to the two nearest matching points at frames M and N respectively, and where M < 

i < N and N − M + 1 ≤ 15. 

The added consistency in annotations created by this smoothing is particularly useful in the 

context of unsupervised learning. However, the confidence scores of keypoints generated by 

this smoothing are set to Null, so they can be easily discarded if undesired. 

5 CHAD Statistics 

With over 1.15 million frames, CHAD is the largest anomaly detection dataset available that is 

recorded from continuous video. CHAD has more than 2× the number of frames as the next 

largest dataset, providing a substantial amount of learnable data. Additionally, CHAD has over 

1 million frames of purely normal behaviors, which are required for unsupervised methods that 

rely on learning the normal to understand the anomalous. This is nearly 3× more than can be 

found in other datasets, positioning CHAD as the best-in-class dataset for unsupervised 

approaches. The 59K anomalous frames in CHAD are the 22 anomalous behaviors presented. 

To facilitate supervised, unsupervised, and semi-supervised approaches, CHAD includes two 

splits for training and testing. The unsupervised split has a training set composed only of normal 

behaviors, while the test set contains both normal and anomalous behaviors. For the supervised 

split, the normal and anomalous frames were distributed uniformly between the training and test 

sets, with 60% of each belonging to the training set and 40% to the test set. 

More than just the amount of data, CHAD benefits from having high quality image data. As 

discussed in Section 3, CHAD was recorded from four high-resolution cameras with an 

overlapping view of a scene. Recorded at 30 FPS, CHAD not only boasts a higher resolution 

and frame rate than other datasets, but also presents data in a format representative of modern 

real-world surveillance systems. While resolution and frame rate are indicators of overall video 

quality and the amount of data present in each frame, they can not convey how much of that 

data is actually useful for learning. Difference of Gaussian (Crowley and Parker 1984) is an 

image processing method that has been used to simulate how the human eye extracts visual 
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details of an image for neural processing (Lv et al. 2015). More simply, it creates a visual 

illustration of the density and richness of the features in an image. This allows us to visually 

analyze the quality of the data present in each dataset by comparing the Difference of Gaussian 

between them. 

We visualize the Difference of Gaussian for a single frame of each dataset in Fig. 2. We set a 

Gaussian blur radius of one pixel to maximize the precision of the resulting representa tion. 

Looking at the images, CHAD very clearly presents the most detail. This was anticipated due to 

its high resolution, but the amount by which it surpasses the other datasets far exceeded 

expectations. Fine details in the persons, clothing, vehicles, and the environment are clear, 

granting an accurate perception of the original image. IITB-Corridor (Rodrigues et al. 2020) is 

the only other dataset with 1080p images. However, the Difference of Gaussian tells a different 

story. 

 

 
Table: Annotation availability in Shanghai (Liu, W. Luo, and Gao 2018), CUHK (Lu, Shi, and Jia 

2013), UCSD (Mahadevan et al. 2010), Subway (Adam et al. 2008), IITB (Rodrigues et al. 2020), 

Street Scene (Ramachandra and Jones 2020), UBnormal (Acsintoae et al. 2022), and CHAD 

(Ours). * partially annotated, − not annotated. 
 

 

Frame-level 

Label 

Pixel-level 

Label 

Person 

Bounding Box 

Person 

ID 

✓ ✓ − − 

✓ ✓ − − 

✓ * − − 

✓ ✓ − − 

✓ ✓ − − 

✓ ✓ − − 

✓ ✓ ✓ − 

 
 
 

While there are details present in the environment, they are comparably indistinct. Even in the 

brightened image, it is difficult to tell if there is a person in the image. This demonstrates a 

surprising lack of rich features in the IITB-Corridor, despite the resolution. 
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Resolution and frame rate in Shanghai (Liu, W. Luo, and Gao 2018), CUHK (Lu, Shi, and Jia 

2013), UCSD (Ma hadevan et al. 2010), Subway (Adam et al. 2008), IITB (Rodrigues et al. 

2020), Street Scene (Ramachandra and Jones 2020), UBnormal (Acsintoae et al. 2022), and 

CHAD (Ours). N/A means Not Available. 
 

Street View, at the next highest resolution, shows much more detail and clarity than IITB- 

Corridor, though nowhere near the level of CHAD. What is most interesting is that while the 

building, car, and street boundaries are clear, it is difficult to notice the two people in the bottom 

left of the image. This is perhaps due to their relative size compared to the other objects 

mentioned and not necessarily indicative of a lack of features. Unsurprisingly, the lower 

resolution datasets, UCSD and CUHK Avenue, show sharp focal points (bright white pixels) but 

very little overall detail. Interestingly for ShanghaiTech (Liu, W. Luo, and Gao 2018), despite its 

slightly higher resolution, it presents a similar level of detail as Street Scene. However, due to 

the different camera perspectives, this translates into Shanghai providing better features for 

people, which is beneficial for its context. 

Overall, we can see that CHAD not only has the best in-class resolution and frame rate among 

anomaly detection datasets but also that the videos in CHAD are extremely feature rich, 

unrivaled among its peers. Additionally, there is a significant amount of background information 

irrelevant to personal behaviors. The brightest spot in the Difference of Gaussian for CHAD is 

the foliage in the bottom left. This is noise - a distractor from information pertinent to anomaly 

detection. This means CHAD is not only more informative than other datasets but also suggests 

that it is more challenging as well. This level of challenge is needed if algorithms are to perform 

well in real-world scenarios, which are notorious for being more demanding than dataset 

benchmarks. 

6 Metrics and Measurements 

There are three main metrics used for evaluating performance on anomaly detection datasets: 

Area Under the Receiver Operating Characteristic Curve, Area Under the Precision-Recall 

Curve, and Equal Error Rate. While none of these metrics are truly representative of overall 

performance, they each have their strengths and weaknesses, and, taken together, they can 

provide a comprehensive understanding of how an algorithm truly performs. 

6.1 Receiver Operating Characteristic Curve 

The Area Under the Receiver Operating Characteristic Curve (AUC-ROC) is simply the area 

under the curve when plotting the True Positive Rate (TRP) over the False Positive Rate (FPR) 

over various thresholds. This metric is specific to binary classification, such as determining if a 

video does or does not contain anomalous behavior. Generally, a higher AUC-ROC indicates 

that the model is better at separating inputs into their corresponding classes. The ROC curve 

itself also helps give insight into the trade-off between TPR and FPR at different thresholds 

(Fernandez et al. 2018). How- ´ ever, AUC-ROC is not indicative of the final decisions of a 

model. The metric does not indicate useful information about False Negative Rate (FNR), when 
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an anomaly is classified as normal, which is important to understand for real world applications. 

Additionally, AUC-ROC is very sensitive to imbalances in data (He and Ma 2013), making it sub- 

optimal if one class is over represented, as is often the case with normal behaviors in anomaly 

datasets (Davis and Goadrich 2006). 

 

Figure 2: Visualization of Difference of Gaussian in Shanghai (Liu, W. Luo, and Gao 2018), 

CUHK (Lu, Shi, and Jia 2013), UCSD (Mahadevan et al. 2010), IITB (Rodrigues et al. 2020), 

Street Scene (Ramachandra and Jones 2020), and CHAD (Ours). UCSD cropped to fit. All 

brightened for readability. 

 

Table: Dataset comparison for Shanghai (Liu, W. Luo, and Gao 2018), CUHK (Lu, Shi, and Jia 

2013), UCSD (Mahadevan et al. 2010), Subway (Adam et al. 2008), IITB (Rodrigues et al. 2020), 

Street Scene (Ramachandra and Jones 2020), UBnormal (Acsintoae et al. 2022), and CHAD 

(Ours). CHAD uses an unsupervised split. N/A means Not Available. 

 

 

Total Train Test Normal Anomal 

ous 

Number of 

scenes 

317,398 274,515 42,883 300,308 17,090 13 

30,652 15,328 15,324 26,832 3,820 1 

18,560 9,050 9,210 12,919 5,641 2 

208,925 27,500 181,425 205,805 3120 2 

483,566 301,999 181,567 375,288 108,27 

8 

1 
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203,257 56,847 146,410 N/A N/A 1 

236,902 116,087 28,175 147,887 89,015 29 

 
 
 

 
 

 

6.2 Precision-Recall Curve 
 

Precision is the fraction of correct positive guesses over all positive guesses, while Recall is the 

fraction of correct positive guesses over all positive samples. The Precision-Recall Curve (PR) 

is useful for understanding how to balance Precision and Recall, while the area under this curve 

summarizes all the information represented in it. While AUC-PR heavily focuses on the positive 

class, it still accounts for the False Negative Rate (FNR) – that is when the model classifies an 

anomaly as normal. As such, AUC-PR is a better metric for understanding the prediction ability 

of a model when compared to AUC-ROC (Saito and Rehmsmeier 2015). Additionally, AUC-PR 

is better suited for highly imbalanced data (Saito and Rehmsmeier 2015), making it better at 

evaluation of the minority class (He and Ma 2013). As the minority class in anomaly detection 

usually refers to the anomalous behaviors, this is an important quality for this context. However, 

AUC-PR does not provide insight into the correct classification of negative samples, nor does it 

provide a measure for the number of incorrect decisions a model makes. Thus, much like AUC- 

ROC, AUC-PR provides an incomplete understanding of a model’s performance. 

 
6.3 Equal Error Rate 

Another useful metric is the Equal Error Rate (EER) (Li, Mahadevan, and Vasconcelos 2013). 

Plotting the FNR and FPR over various thresholds produces two curves that intersect at one 

point. The value at the intersection is the EER and shows what threshold value allows the model 

to achieve a balance between FNR and FPR. In the context of video anomaly detection, the 

EER illustrates how many false alarms a model will raise and how many anomalous frames it 

will miss when at equilibrium. On its own, this metric offers little insight into the overall 

performance of a model (Sultani, Chen, and Shah 2018). However, when used as a complement 

to AUC-ROC and AUC-PR, a more complete understanding can be achieved. 

All experiments were conducted on a server containing two Intel Xeon Silver 4114, one V100 

GPU, and 256 GB of RAM. We performed each experiment (training and testing) five times, 

averaging the results to remove any potential skew due to variability. 

6.4 Standard Validation 

To demonstrate CHAD’s viability as an anomaly detection dataset, we train and evaluate two 

state-of-the-art skeleton based models using the unsupervised split. We select Graph 

Embedded Pose Clustering (GEPC) (Markovitz et al. 2020) 
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Both models were trained on each of CHAD’s four cam era views individually. The most obvious 

observation is that both models were able to learn on CHAD. GEPC achieved an average AUC- 

ROC of 0.663 and AUC-PR of 0.619, while MPED-RNN achieved an average AUC-ROC of 

0.718 and AUC-PR of 0.635. For both models, the AUC-ROC is noticeably higher than the AUC- 

PR. This is largely due to the overwhelming majority of normal frames in the data, which if 

properly classi fied will be a significant boost to the AUC-ROC. AUC-PR, on the other hand, 

does not count True Negatives, and as such gives a more measured result for the imbalanced 

data. Additionally, GEPC achieved an EER of 0.378 and MPED-RNN an EER of 0.339. This 

means that, given the threshold at equilibrium, both models can expect to see between 34% 

and 38% of both normal frames and anomalous frames to be misclassified. This is important to 

understand when targeting real-world applications, where misclassification rates are more 

important than class separability. 

6.5 Cross Validation 

To illustrate CHAD’s ability to train models that can generalize, we perform cross validation 

experiments with another anomaly dataset in the same domain. We choose the popular 

ShanghaiTech Campus Dataset (Liu, W. Luo, and Gao 2018) for its relatively large size, its 

similar context to CHAD, and its proven track record in anomaly detection research. For these 

experiments, we use GEPC, as its multi-camera training methodology allows for a simple 

conversion to cross validation. For both CHAD and ShanghaiTech, a single model is trained for 

all cameras in one dataset, then tested on both datasets. The first thing to notice is that models 

trained on CHAD perform well on ShanghaiTech, and models trained on ShanghaiTech perform 

well on CHAD. This is logical, as the contexts for the two datasets (i.e. setting, camera views, 

anomalous behaviors) are quite similar. In all metrics, the validation of models across datasets 

performs within 1-2% of models validated on their parent datasets, showing that models trained 

on either can generalize quite well given their similar contexts. 

For all metrics, models tend to achieve lower scores (or higher in the case of EER) on CHAD 

than they do on ShanghaiTech. Since both models performed equally well in cross validation, 

the logical assumption is that CHAD’s test set is more challenging than ShanghaiTech. This is 

in part due to the additional noise and distractions present in CHAD, as explained in Section 5. 

The other major factor is the inclusion of very subtle and complex anomalies in CHAD. Pick- 

pocketing is subtle by design, as most pick-pockets are trying not to be seen. Littering is also 

quite complex to learn, especially for a model that relies solely on human keypoints. Combined 

with the sheer size of CHAD’s test set (3× that of Shanghaitech), this makes for a very 

challenging dataset for current anomaly detection algorithms. 

7. Conclusion 

This paper presented the Charlotte Anomaly Dataset (CHAD). Consisting of more than 1.15m 

high-resolution frames of a single scene, CHAD is the largest anomaly detection dataset 

recording from continuous video available. In addition to frame-level anomaly labels, CHAD 

goes further than other datasets and provides bounding-box, person ID, and human keypoints 
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annotations, enabling a unified bench marking standard for both skeleton and appearance- 

based anomaly detection. Additionally, this paper assesses three metrics for anomaly detection 

and proposes their use in combination as a new standard for real-world video anomaly detection. 
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